

Parallax 2010 RF Design Contest:

Experimental Robotics Platform

Stephen Emery

StephenAEmery3@aol.com

Project ID: RF104322

RF104322 Experimental Robotics Platform Page 2 of 17

Table of Contents:

Project Number .. 3

Project Description .. 3

Schematics .. 4

Block Diagram .. 6

Source Code .. 7

Bill of Materials .. 12

Pictures .. 14

RF104322 Experimental Robotics Platform Page 3 of 17

Project Number:

RF104322

Project Description:

 I have designed and built an experimental robotics platform using the drive

system of an electric scooter. It has several important and useful features, including

remote control, emergency stops, and shutdown circuitry. In this report I will provide a

clear description of these features so that others may incorporate them into their projects.

 Ever since elementary school, I have wanted to build a robot. Sure, I’ve built a

few from kits, but I wanted to build one from scratch. One I could tweak, modify, and

redesign. A platform I could use to explore concepts such as autonomy and telepresence,

one large enough to experiment with any sensors or actuators I could think of. I’ve

always had so many ideas for projects that building a large robot always got pushed off to

the side because of the time and the cost required. But the day I found an old Shoprider

scooter at a garage sale, I knew the time had come.

 After restoring the scooter to working order, I began working out how to interface

it with a microcontroller. I soon discovered that the most expedient method was to

emulate the analog signals of the joystick and throttle control on the motor controller.

This was simple enough, but I was not familiar with using one joystick to control two

wheels, so I wanted to get a feel for the platform’s range of motion and control scheme. I

needed a way to control the robot from a distance so I could do this without tripping over

it. I decided that the most practical approach would be to relay commands from a

remotely located joystick to the motor controller. I chose the 433 MHz RF Transceivers

for their ease of integration: the serial interface makes sending and receiving data

straightforward, and the 0.1” spaced header lend themselves to the prototyping phase.

 Adding remote control to the project presented a design challenge: what does the

robot do when it does not have a signal? The answer should be “nothing”. Thus, adding

and out-of-range halt feature to the code was critical. Additionally, I decided that the

robot should also have a user-activated E-stop that was separate from the main control

circuitry, so that if there was a problem with the software, the robot could still be

stopped. A keyless entry system for an automobile was used for this purpose. The E-stop

is designed so that one button stops the robot, then that button must be pressed again to

reset the robot, and then another button must be pressed to re-enable the robot. The

reason for this is so that pressing the stop button repeatedly, as one may do in case of

panic, will not reactivate the robot. There is no enable button on the robot so that the

operator must be in possession of the E-stop fob in order to use the robot.

 The startup and shutdown sequences of the robot are very important, because the

motor controller will drop into an unresponsive error state if it receives out-of-bounds

inputs. To remedy this problem, the Stamp was given control of its own voltage supply so

it could manage the startup and shutdown sequences.

RF104322 Experimental Robotics Platform Page 4 of 17

Schematics:

Figure 1 shows the schematic for the remote control. The user inputs are a joystick (R5)

and a potentiometer (R4). The Stamp (U1) reads these inputs and the transmits them to

the robot using the 433 MHz Transceiver (U2) (see Source Code for details). The Stamp

is mounted on the Board of Education (BOE), so several connections have been omitted

for clarity, as they have been documented elsewhere.

FIGURE 1: Remote Control

Figure 2 shows the schematic for the robot. The communication and control subsystems

will be discussed in the Block Diagram section below, but the power subsystem will be

discussed here. The robot runs on 24V, supplied by two 12V, 36Ah SLA batteries. 12V is

taken from the battery connected to ground and used to power two cold-cathode

fluorescent lamps (not shown for clarity) and the robot communication and control

circuitry. When the user presses the power button (SW1), Q1 gets turned on, supplying

12V to the 5V regulator (U1). The Stamp (U2) has until the user releases the power

button to turn on Q2, which keeps Q1 turned on. After the Stamp makes some other

initializations (see Source Code for details), it turns on the motor controller. When the

user pushes the power button again, P14 on the Stamp will go low. This tells the Stamp to

turn off the motor controller, and then turn off Q2, which turns off Q1 and the rest of the

robot with it. There are two slight drawbacks to this circuit. First, the power button must

be held down while downloading programs, since it is the BS2 that latches the power.

Second, a side effect of the power button being the same button that gets read by the

Stamp is that current leaks through the diode (D2) while the system is off. It’s only

around 200nA, which is not a problem for these large batteries. However, separating the

“on” and “request shutdown” functions of SW1 by replacing it with a DPDT would

eliminate this problem.

RF104322 Experimental Robotics Platform Page 5 of 17

FIGURE 2: Robot Electronics

RF104322 Experimental Robotics Platform Page 6 of 17

Figure 3 shows the programming adapter for the robot. It is very convenient because it

has the two capacitors required to program the BASIC Stamp, so the only component

needed on a board is the 4 pin header. Also, the capacitors can be by switched out of the

circuit, which has uses in other applications.

FIGURE 3: Programming Adapter

Block Diagram:

This section describes the communication and control of the system. Figure 4 shows the

block diagram, and Figures 6-8 (Pictures section) show where these blocks are located in

the system. The robot receives data for the remote control using a 433 MHz Transceiver

(6). The Stamp (7) reads the data from transceiver, checks it for errors, and sets the DAC

(8) accordingly (see Source Code for details). The DAC is composed of 4 digital

potentiometers which simulate the original throttle and joystick inputs to the motor

controller. One is used directly to control the throttle, and outputs of the other three are

scaled up using op-amps to set the X, Y, and reference joystick inputs (the digital

potentiometer used to set the joystick reference is not controlled by the Stamp, it stays in

its initial center position).

The E-stop transmitter (1) and receiver (9) are used with a relay (10) to disable the robot

by setting both the X and Y inputs of the motor controller to the reference voltage. To the

motor controller, it appears that the user has let go of the joystick. The ideal E-Stop

would be to turn the whole system off, but some online documentation for the motor

controller states that it can be damaged by turning it off while the wheels are moving.

The scheme used on the robot is a reasonable compromise, because it is unlikely that the

motor controller itself will be the cause of a problem, since it has undergone far more

rigorous engineering and testing than the rest of the robot, which is being built for the

first time. However, future designs should include a motor controller that can be shut off

while the robot is moving.

RF104322 Experimental Robotics Platform Page 7 of 17

E-Stop
Relay
(10)

DAC
(8)

Motor
Controller

(11)

Joystick (2)
BS2
(4)

433 MHz
TRX (5)

Throttle (3)

BS2
(7)

433 MHz
TRX (6)

E-Stop
Tx (1)

E-Stop
Rx (9)

Programming
Adapter (12)

Serial

X (RCTIME)

Y (RCTIME)

S (RCTIME)

Serial

Serial

PULSOUT

Enable

X (Analog) X/REF (Analog)

Y (Analog)

REF (Analog)

Y/REF (Analog)

REF (Analog)

S (Analog)

CS x3

Up/Down

Stop/Reset

FIGURE 4: System Block Diagram

Source Code:

The code for the remote control uses the RCTIME function to read the positions of the

joystick an the throttle potentiometer. It converts this data into the format used to set the

DAC on the robot, and then transmits it serially with a 2-byte start-of-message identifier.

'==

'Robot_Xmt.bs2

'Stephen Emery

'05/31/2010

'==

' {$STAMP BS2}

' {$PBASIC 2.5}

'PINS==

Xmt PIN 15 '433 MHz Transceiver

XPot PIN 11 'L/R Joystick Pot

YPot PIN 9 'U/D Joystick Pot

SPot PIN 10 'Throttle Pot (s is for speed)

'CONSTANTS===

B2400 CON 396 '2400 Baud, 8-Bit, No Parity

RF104322 Experimental Robotics Platform Page 8 of 17

XYMax CON 76 'Maximum value for the joystick outputs of the robot's DAC

XYCen CON 64 'Center value for the joystick outputs of the robot's DAC

XYMin CON 50 'Minimum value for the joystick outputs of the robot's DAC

SMax CON 127 'Maximum value for the throttle output of the robot's DAC

'VARIABLES===

xTime VAR Word

yTime VAR Word

sTime VAR Word

x VAR Byte

y VAR Byte

s VAR Byte

'MAIN ROUTINE==

DO

 'Get potentiometer positions

 HIGH XPot

 HIGH YPot

 HIGH SPot

 PAUSE 100

 RCTIME XPot, 1, xTime

 RCTIME YPot, 1, yTime

 RCTIME SPot, 1, sTime

 'Convert position data to the format used by the robot's DAC

 IF (xTime > 378) THEN

 x = xTime*11/215 + 45

 ELSEIF (xTime < 338) THEN

 x = xTime*13/279 + 49

 ELSE

 x = XYCen

 ENDIF

 IF (yTime > 370) THEN

 y = yTime*11/277 + 50

 ELSEIF (yTime < 296) THEN

 y = yTime*13/279 + 50

 ELSE

 y = XYCen

 ENDIF

 s = sTime*64/579*2

 IF (x > XYMax) THEN x = XYMax

 IF (x < XYMin) THEN x = XYMin

 IF (y > XYMax) THEN y = XYMax

 IF (y < XYMin) THEN y = XYMin

 IF (s > SMax) THEN s = SMax

 'Transmit sync pulse (range will be at least halved without this)

 PULSOUT 15, 1200

 'Transmit data with 2-byte start-of-message identifier. The order of the

 'variables is such that the identifier cannot occur twice in message.

 SEROUT Xmt, B2400, [$55, $55, x, s, y]

LOOP

RF104322 Experimental Robotics Platform Page 9 of 17

The code for the robot reads 14 bytes (all that fits in variable memory) of serial data from

the 433MHz transceiver, to increase the chance of capturing a complete 5-byte message.

If the 2-byte start-of-message identifier is not found, then there is no data (transmitter is

off or out of range), missing data, or the data has been corrupted, and the DAC is set to

the last received values. If a certain amount of time elapses when no valid data is

received, the DAC will be set to the neutral position (the robot halts). The code is also

responsible for managing the startup and shutdown sequences of the robot.

'==

'Robot_Rcv.bs2

'Stephen Emery

'05/31/2010

'==

' {$STAMP BS2}

' {$PBASIC 2.5}

'PINS==

Rcv PIN 7 '433 MHz Transceiver

UpDown PIN 10 'connected to the Up/Down pin of the 3 AD5220s

Clk PIN 11 'connected to the Clk pin of the 3 AD5220s

CsXPot PIN 9 'Chip Select for the AD5220 for x joystick output

CsYPot PIN 8 'Chip Select for the AD5220 for y joystick output

CsSPot PIN 12 'Chip Select for the AD5220 for throttle output

PwrLatch PIN 15 'must be set high before the user releases the power button

PbVal PIN 14 'The state of the robot power button is read on this pin

McOut PIN 13 '10 ms pulse turns the Motor Controller ON or OFF

LedA PIN 5 'Bi-color LED anode (used in subroutines)

LedC PIN 6 'Bi-color LED cathode (used in subroutines)

'CONSTANTS===

B2400 CON 396 '2400 Baud, 8-Bit, No Parity

InitPos CON 64 'Initial (center) value of the AD5220s

XYMax CON 76 'Maximum value for the x and y AD5220s

XYMin CON 50 'Minimum value for the x and y AD5220s

SMax CON 127 'Maximum value for the s AD5220

'VARIABLES===

xPotPos VAR Byte 'current position of the x AD5220

yPotPos VAR Byte 'current position of the y AD5220

sPotPos VAR Byte 'current position of the s AD5220

x VAR Byte(2) 'present and previous value sent to the x AD5220

y VAR Byte(2) 'present and previous value sent to the y AD5220

s VAR Byte(2) 'present and previous value sent to the s AD5220

timeout VAR Word 'used to monitor link status

serData VAR Byte(14) 'data received from the 433MHz Transceiver

i VAR Byte 'counter variable

'MAIN ROUTINE==

HIGH PwrLatch 'keeps robot power on

LOW McOut

HIGH CsXPot

HIGH CsYPot

HIGH CsSPot

RF104322 Experimental Robotics Platform Page 10 of 17

xPotPos = InitPos

yPotPos = InitPos

sPotPos = InitPos

FOR i = 0 TO 1

 x(i) = InitPos

 y(i) = InitPos

 s(i) = InitPos

NEXT

timeout = 0

DO

LOOP WHILE (PbVal = 0) 'wait until button is released

PAUSE 200

PULSOUT McOut, 5000 'power up motor controller

DO

 'Get data from 433MHz Transceiver

 SERIN Rcv, B2400, [STR serData\9]

 GOSUB Led_Red

 timeout = timeout + 1

 'Find message

 FOR i = 0 TO 9

 IF ($55 = serData(i) AND $55 = serData(i+1)) THEN

 x(0) = serData(i+2)

 s(0) = serData(i+3)

 y(0) = serData(i+4)

 GOSUB Led_Green 'if no intelligible data, the LED will stay red

 timeout = 0 'clear timeout count

 EXIT

 ENDIF

 NEXT

 'Check data for errors

 IF (XYMin > x(0) OR XYMax < x(0) OR XYMin > y(0) OR XYMax < y(0)) THEN

 x(0) = x(1)

 y(0) = y(1)

 ENDIF

 IF (SMax < s(0)) THEN

 s(0) = s(1)

 ENDIF

 'Check for timeout

 IF (timeout > 10) THEN

 x(0) = InitPos

 y(0) = InitPos

 timeout = 10

 ENDIF

 'Shift values

 x(1) = x(0)

 y(1) = y(0)

 s(1) = s(0)

 GOSUB Check_Pb

 'Set x potentiometer

RF104322 Experimental Robotics Platform Page 11 of 17

 IF (xPotPos > x(0)) THEN

 LOW UpDown

 LOW CsXPot

 DO

 PULSOUT Clk, 1

 xPotPos = xPotPos - 1

 LOOP WHILE (xPotPos <> x(0))

 HIGH CsXPot

 ELSEIF (xPotPos < x(0)) THEN

 HIGH UpDown

 LOW CsXPot

 DO

 PULSOUT Clk, 1

 xPotPos = xPotPos + 1

 LOOP WHILE (xPotPos <> x(0))

 HIGH CsXPot

 ENDIF

 GOSUB Check_Pb

 'Set y potentiometer

 IF (yPotPos > y(0)) THEN

 LOW UpDown

 LOW CsYPot

 DO

 PULSOUT Clk, 1

 yPotPos = yPotPos - 1

 LOOP WHILE (yPotPos <> y(0))

 HIGH CsYPot

 ELSEIF (yPotPos < y(0)) THEN

 HIGH UpDown

 LOW CsYPot

 DO

 PULSOUT Clk, 1

 yPotPos = yPotPos + 1

 LOOP WHILE (yPotPos <> y(0))

 HIGH CsYPot

 ENDIF

 GOSUB Check_Pb

 'Set throttle potentiometer

 IF (sPotPos > s(0)) THEN

 LOW UpDown

 LOW CsSPot

 DO

 PULSOUT Clk, 1

 sPotPos = sPotPos - 1

 LOOP WHILE (sPotPos <> s(0))

 HIGH CsSPot

 ELSEIF (sPotPos < s(0)) THEN

 HIGH UpDown

 LOW CsSPot

 DO

 PULSOUT Clk, 1

 sPotPos = sPotPos + 1

 LOOP WHILE (sPotPos <> s(0))

 HIGH CsSPot

 ENDIF

 GOSUB Check_Pb

LOOP

'SUBROUTINES===

Check_Pb:

RF104322 Experimental Robotics Platform Page 12 of 17

 IF (PbVal = 0) THEN

 GOSUB Led_Red

 DO

 LOOP UNTIL (PbVal = 1) 'wait until button is released

 PULSOUT McOut, 5000 'power down motor controller

 PAUSE 200

 LOW PwrLatch 'turn off robot power

 ENDIF

 RETURN

Led_Red:

 HIGH LedC

 LOW LedA

 RETURN

Led_Green:

 LOW LedC

 HIGH LedA

 RETURN

Bill of Materials:

Remote:

Description P/N MFR/Vendor Qty. Ref.

Board of Education (USB) 28850 Parallax 1 -

BASIC Stamp 2 BS2-IC Parallax 1 U1

433 MHz Transceiver 27982 Parallax 1 U2

2-Axis Joystick 27800 Parallax 1 R5

10K Potentiometer, Trim 152-01031 Parallax 1 R4

Resistor, 220Ω - RadioShack 3 R1, R2, R3

Capacitor, 0.1µF - - 3 C1, C2, C3

Robot:

Description P/N MFR/Vendor Qty. Ref.

Shoprider Scooter - Shoprider 1 -

5V Regulator LM7805 RadioShack 1 U1

BASIC Stamp 2 BS2-IC Parallax 1 U2

433 MHz Transceiver 27982 Parallax 1 U3

10K Digital Potentiometer AD5220 Parallax 4 U4, U5, U6, U7

Op-Amp LM741 RadioShack 3 U8, U9, U10

Keyless Entry System - Amenity 1 U11

Relay, 12VDC, DPDT 275-249 RadioShack 1 RL1

MOSFET, P-Channel NTE2381 Fry’s Electronics 2 Q1, Q3

Transistor, NPN 2N3904 RadioShack 1 Q2

RF104322 Experimental Robotics Platform Page 13 of 17

MOSFET, N-Channel IRF510 RadioShack 2 Q4, Q5

Diode 1N4005 RadioShack 4 D1, D2, D3, D4

LED, Red - RadioShack 1 LED1

LED, Red/Green - RadioShack 1 LED2

LED, Yellow - RadioShack 1 LED3

LED, Green - RadioShack 1 LED4

Pushbutton - - 1 SW1

Tact Switch 400-00002 Parallax 1 SW2

Header, 4-pin, Male - - 1 J1

Capacitor, 0.33µF - - 1 C1

Capacitor, 0.1µF - - 1 C2

Resistor, 220Ω - RadioShack 1 R6

Resistor, 470Ω - RadioShack 1 R5

Resistor, 1K - RadioShack 2 R13, R16

Resistor, 10K - RadioShack 4 R1, R2, R14, R15

Resistor, 33K - RadioShack 3 R7, R8, R9

Resistor, 47K - RadioShack 3 R10, R11, R12

Resistor, 100K - RadioShack 2 R3, R4

CCFL 12” Blue 801-00010 Parallax 2 Not Shown

12V Inverter for CCFL 750-00060 Parallax 1 Not Shown

Programming Adapter:

Description P/N MFR/Vendor Qty. Ref.

D-Sub, 9-pin, Female - Fry’s Electronics 1 P1

Header, 4-pin, Female - - 1 P2

Slide Switch, DPDT 275-007 RadioShack 1 SW1

Capacitor, 0.1µF 272-135 RadioShack 2 C1, C2

RF104322 Experimental Robotics Platform Page 14 of 17

Pictures:

FIGURE 5: Stephen with his Robot

RF104322 Experimental Robotics Platform Page 15 of 17

FIGURE 6: E-Stop Fob and Robot Remote Control (Numbers refers to Figure 4)

1
2

3

4

5

RF104322 Experimental Robotics Platform Page 16 of 17

FIGURE 7: Robot Electronics (Numbers refers to Figure 4)

6

7

11

10

9

8

RF104322 Experimental Robotics Platform Page 17 of 17

FIGURE 8: Programming Adapter (Numbers refers to Figure 4)

FIGURE 9: The Robot illuminated by its two Cold-Cathode Fluorescent Lamps

12

